
BIOL 350: Bioinformatics
Introduction to genetic 

association studies
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What is a SNP?
Polymorphisms and their role in genetics
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Single-nucleotide polymorphisms

• Polymorphism is the 
tendency of DNA to admit 
of different nucleotide 
pairs at a single locus
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Single-nucleotide polymorphisms

• Of 3.2 billion bases, any 
individual is polymorphic 
at 4–5 million sites
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Single-nucleotide polymorphisms

• The more common allele 
is called the major allele
• The less common allele is 
called the minor allele
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IUPAC-IUB SNP codes

•More than just A, T, G, and C?
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IUPAC-IUB SNP codes

• Each polymorphism is 
coded by its possible 
alleles
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IUPAC-IUB SNP codes

• Each polymorphism is 
coded by its possible 
alleles
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Code Meaning Explanation

R A or G PuRrine

Y C or T PYrimidine

S G or C Strong H-bonding

W A or T Weak H-bonging

K G or T Keto bases

M A or C aMino bases

B C or G or T not A

D A or G or T not C

H A or C or T not G

V A or C or G not T

N A or C or G or T ANy



Many rare SNPs

• Common SNPs have minor 
allele frequency (MAF) 
>5% 
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Many rare SNPs

•Most SNPs of the >600 
million known SNPs are 
very rare (frequency < 
0.5%) 
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Many rare SNPs

• But only <5% of an 
individual’s genome 
consists of rare SNPs 
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Transitions and transversions

• Transitions occur 
between nucleotides of 
the same type (purines or 
pyrimidines)
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Transitions and transversions

• Transversions occur 
between nucleotides of 
opposite type (between 
purines and pyrimidine) 
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How many polymorphisms are there?

• If there are 𝑛 nucleotide 
pairs, there are 𝑛 
symmetric conversions:
• A/T à T/A transversion
• C/G à G/C transversion
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How many polymorphisms are there?

• If there are 𝑛 nucleotide 
pairs, there are 𝑛 𝑛 − 1  
asymmetric conversions: 
• A/T à C/G transversion 
• A/T à G/C transition
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How many polymorphisms are there?

• A total of 𝑛 + 𝑛 𝑛 − 1 =
𝑛! polymorphims
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Transition-transversion ratio

• Even though there are 
three times as many 
transversions possible as 
transitions, in humans the 
ratio of transitions to 
transversions is 
approximately 2, 
genome-wide

Fig. 2. A het/nonref-hom ratio for exome regions. B het/nonref-hom
ratio for intron regions. C het/nonref-hom ratio for intergenic regions.
D het/nonref-hom ratio for non-coding RNA regions. E het/nonref-hom
ratio for miRNA regions

Fig. 1. A Ti/Tv ratio for exome regions. B Ti/Tv ratio for intron regions.
C Ti/Tv ratio for intergenic regions. D Ti/Tv ratio for non-coding RNA
regions. E Ti/Tv ratio for miRNA regions. The variation for Ti/Tv is
higher than other regions because much fewer SNPs are in miRNA
regions

3

Genome measures used for quality control

 at V
anderbilt U

niversity - M
assey Law

 Library on January 14, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

BIOL 350 – Spring 2024 17https://pubmed.ncbi.nlm.nih.gov/25297068/

https://pubmed.ncbi.nlm.nih.gov/25297068/


Transition-transversion ratio

• In coding regions, the 
Ti:Tv ratio is as high as 3

Fig. 2. A het/nonref-hom ratio for exome regions. B het/nonref-hom
ratio for intron regions. C het/nonref-hom ratio for intergenic regions.
D het/nonref-hom ratio for non-coding RNA regions. E het/nonref-hom
ratio for miRNA regions

Fig. 1. A Ti/Tv ratio for exome regions. B Ti/Tv ratio for intron regions.
C Ti/Tv ratio for intergenic regions. D Ti/Tv ratio for non-coding RNA
regions. E Ti/Tv ratio for miRNA regions. The variation for Ti/Tv is
higher than other regions because much fewer SNPs are in miRNA
regions
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Generation of sequencing 
data
Sequencing technologies and data formats
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How do we get human genotypes?

• SNP Chips
•Whole-genome sequencing
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SNP Chips

• Genomic DNA binds to a complementary sequence and 
incorporates a fluorescently labelled nucleotide
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SNP Chips

• The ratio of red to green at a spot identifies the 
sample allele
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Whole-genome sequencing (WGS)

• DNA fragments from a sample are attached to a flow 
cell and amplified
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Whole-genome sequencing (WGS)
• Sequencing by synthesis: Short reads are produced as 
fluorescent nucleotides are incorporated one base at a time
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Whole-genome sequencing (WGS)

• The DNA sequence is 
inferred from the 
sequence of fluorescence 
images
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Mapping to the reference genome

• Locate where in the 
genome the reads 
came from, and 
detect single-
nucleotide 
differences from the 
reference sequence
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Data-processing pipeline

• Generate raw reads
• Align to a reference genome
• Detect variant sites
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FASTQ

• Contains raw 
sequence reads 
and their quality 
scores to be 
aligned to a 
reference genome 
(FASTA)
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SAM (BAM)

• Paired-end reads are aligned to either the forward or 
reverse strand of the reference genome
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SAM (BAM)

• Paired-end reads are aligned to either the forward or 
reverse strand of the reference genome
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SAM (BAM)

• Paired-end reads are aligned to either the forward or 
reverse strand of the reference genome
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SAM (BAM)

• A Sequence 
alignment map (SAM) 
or binary alignment 
map (BAM) file 
contains the 
alignments to the 
reference genome
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• How certain can we be of an individual’s genotype?

Variant calling (mpileup)
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• How certain can we be of an individual’s genotype?

Variant calling (mpileup)
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• How certain can we be of an individual’s genotype?

Variant calling (mpileup)
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VCF

• The results of genotype-calling are stored in a variant 
call format (VCF) file
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VCF

• The VCF file has one row for each variant, and one 
column for each sequenced individual
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VCF

• Codes such as GT, DP, GP give the genotype, read 
depth, and genotype probabilities for each individual
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Human genetic variation
Sequencing projects and implications for 
association studies

BIOL 350 – Spring 2024 39



The HapMap Project

• International genotyping 
consortium launched in 
2002 to find common 
polymorphisms linked to 
rare disease loci
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values30, or another based on the four gamete test51), most of the
sequence falls into long segments of strong LD that contain many
SNPs and yet display limited haplotype diversity (Table 5).
Specifically, addressing concerns that blocks might be an artefact

of low marker density52, in these nearly complete data most of the
sequence falls into blocks of four or more SNPs (67% in YRI to 87%
in CEU) and the average sizes of such blocks are similar to initial
estimates30. Although the average block spans many SNPs (30–70),
the average number of common haplotypes in each block ranged
only from 4.0 (CHB þ JPT) to 5.6 (YRI), with nearly all haplotypes
in each block matching one of these few common haplotypes. These
results confirm the generality of inferences drawn from disease-
mapping studies27 and genomic surveys with smaller sample sizes29

and less complete data30.
Long-range haplotypes and local patterns of recombination.
Although haplotypes often break at recombination hotspots (and
block boundaries), this tendency is not invariant. We identified all

unique haplotypes with frequency more than 0.05 across the 269
individuals in the phased data, and compared them to the fine-scale
recombination map. Figure 10 shows a region of chromosome 19
over which many such haplotypes break at identified recombination
hotspots, but others continue. Thus, the tendency towards co-
localization of recombination sites does not imply that all haplotypes
break at each recombination site.
Some regions display remarkably extended haplotype structure

based on a lack of recombination (Supplementary Fig. 8a, b). Most
striking, if unsurprising, are centromeric regions, which lack recom-
bination: haplotypes defined by more than 100 SNPs span several
megabases across the centromeres. The X chromosome has multiple
regions with very extensive haplotypes, whereas other chromosomes
typically have a few such domains.
Most global measures of LD become more consistent when

measured in genetic rather than physical distance. For example,
when plotted against physical distance, the extent of pairwise LD

Table 5 | Haplotype blocks in ENCODE regions, according to two methods

Parameter YRI CEU CHB þ JPT

Method based on a composite of local D’ values30

Average number of SNPs per block 30.3 70.1 54.4
Average length per block (kb) 7.3 16.3 13.2
Fraction of genome spanned by blocks (%) 67 87 81
Average number of haplotypes (MAF $ 0.05) per block 5.57 4.66 4.01
Fraction of chromosomes due to haplotypes with MAF $ 0.05 (%) 94 93 95

Method based on the four gamete test51

Average number of SNPs per block 19.9 24.3 24.3
Average length per block (kb) 4.8 5.9 5.9
Fraction of genome spanned by blocks (%) 86 84 84
Average number of haplotypes (MAF $ 0.05) per block 5.12 3.63 3.63
Fraction of chromosomes due to haplotypes with MAF $ 0.05 (%) 91 95 95

Figure 7 | Genealogical relationships among haplotypes and r2 values in a
region without obligate recombination events. The region of chromosome
2 (234,876,004–234,884,481 bp; NCBI build 34) within ENr131.2q37
contains 36 SNPs, with zero obligate recombination events in the CEU
samples. The left part of the plot shows the seven different haplotypes
observed over this region (alleles are indicated only at SNPs), with their
respective counts in the data. Underneath each of these haplotypes is a

binary representation of the same data, with coloured circles at SNP
positions where a haplotype has the less common allele at that site. Groups
of SNPs all captured by a single tag SNP (with r2 $ 0.8) using a pairwise
tagging algorithm53,54 have the same colour. Seven tag SNPs corresponding
to the seven different colours capture all the SNPs in this region. On the right
these SNPs are mapped to the genealogical tree relating the seven haplotypes
for the data in this region.

ARTICLES NATURE|Vol 437|27 October 2005

1306
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The HapMap Project

• Variants occur together 
on a small number of 
haplotypes

© 2005 Nature Publishing Group 

values30, or another based on the four gamete test51), most of the
sequence falls into long segments of strong LD that contain many
SNPs and yet display limited haplotype diversity (Table 5).
Specifically, addressing concerns that blocks might be an artefact

of low marker density52, in these nearly complete data most of the
sequence falls into blocks of four or more SNPs (67% in YRI to 87%
in CEU) and the average sizes of such blocks are similar to initial
estimates30. Although the average block spans many SNPs (30–70),
the average number of common haplotypes in each block ranged
only from 4.0 (CHB þ JPT) to 5.6 (YRI), with nearly all haplotypes
in each block matching one of these few common haplotypes. These
results confirm the generality of inferences drawn from disease-
mapping studies27 and genomic surveys with smaller sample sizes29

and less complete data30.
Long-range haplotypes and local patterns of recombination.
Although haplotypes often break at recombination hotspots (and
block boundaries), this tendency is not invariant. We identified all

unique haplotypes with frequency more than 0.05 across the 269
individuals in the phased data, and compared them to the fine-scale
recombination map. Figure 10 shows a region of chromosome 19
over which many such haplotypes break at identified recombination
hotspots, but others continue. Thus, the tendency towards co-
localization of recombination sites does not imply that all haplotypes
break at each recombination site.
Some regions display remarkably extended haplotype structure

based on a lack of recombination (Supplementary Fig. 8a, b). Most
striking, if unsurprising, are centromeric regions, which lack recom-
bination: haplotypes defined by more than 100 SNPs span several
megabases across the centromeres. The X chromosome has multiple
regions with very extensive haplotypes, whereas other chromosomes
typically have a few such domains.
Most global measures of LD become more consistent when

measured in genetic rather than physical distance. For example,
when plotted against physical distance, the extent of pairwise LD

Table 5 | Haplotype blocks in ENCODE regions, according to two methods

Parameter YRI CEU CHB þ JPT

Method based on a composite of local D’ values30

Average number of SNPs per block 30.3 70.1 54.4
Average length per block (kb) 7.3 16.3 13.2
Fraction of genome spanned by blocks (%) 67 87 81
Average number of haplotypes (MAF $ 0.05) per block 5.57 4.66 4.01
Fraction of chromosomes due to haplotypes with MAF $ 0.05 (%) 94 93 95

Method based on the four gamete test51

Average number of SNPs per block 19.9 24.3 24.3
Average length per block (kb) 4.8 5.9 5.9
Fraction of genome spanned by blocks (%) 86 84 84
Average number of haplotypes (MAF $ 0.05) per block 5.12 3.63 3.63
Fraction of chromosomes due to haplotypes with MAF $ 0.05 (%) 91 95 95

Figure 7 | Genealogical relationships among haplotypes and r2 values in a
region without obligate recombination events. The region of chromosome
2 (234,876,004–234,884,481 bp; NCBI build 34) within ENr131.2q37
contains 36 SNPs, with zero obligate recombination events in the CEU
samples. The left part of the plot shows the seven different haplotypes
observed over this region (alleles are indicated only at SNPs), with their
respective counts in the data. Underneath each of these haplotypes is a

binary representation of the same data, with coloured circles at SNP
positions where a haplotype has the less common allele at that site. Groups
of SNPs all captured by a single tag SNP (with r2 $ 0.8) using a pairwise
tagging algorithm53,54 have the same colour. Seven tag SNPs corresponding
to the seven different colours capture all the SNPs in this region. On the right
these SNPs are mapped to the genealogical tree relating the seven haplotypes
for the data in this region.
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The HapMap Project

• Phase 3 (2010): genotyping and PCR resequencing of 
1.6 million SNPs from 1,184 human samples from 
different parts of the world
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The 1000 Genomes Project

• An international 
consortium launched in 
2008 to catalog rare 
variants (frequency < 
1%) taking advantage of 
new sequencing 
technologies
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The 1000 Genomes Project

• Phase 3 release (2015) 
contained data from 
2,504 individuals 
representing 26 
populations across the 
globe, and identified 85 
million new SNPs
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Global genetic variation

• Most SNPs are shared across continents, and the majority of 
variation (~85%) is within rather than between populations
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The total number of observed non-reference sites differs greatly
among populations (Fig. 1b). Individuals from African ancestry
populations harbour the greatest numbers of variant sites, as pre-
dicted by the out-of-Africa model of human origins. Individuals from
recently admixed populations show great variability in the number of
variants, roughly proportional to the degree of recent African ancestry
in their genomes.

The majority of variants in the data set are rare: ,64 million auto-
somal variants have a frequency ,0.5%, ,12 million have a frequency
between 0.5% and 5%, and only ,8 million have a frequency .5%
(Extended Data Fig. 3a). Nevertheless, the majority of variants observed
in a single genome are common: just 40,000 to 200,000 of the variants in
a typical genome (1–4%) have a frequency ,0.5% (Fig. 1c and
Extended Data Fig. 3b). As such, we estimate that improved rare variant
discovery by deep sequencing our entire sample would at least double
the total number of variants in our sample but increase the number of
variants in a typical genome by only ,20,000 to 60,000.

Putatively functional variation
When we restricted analyses to the variants most likely to affect gene
function, we found a typical genome contained 149–182 sites with
protein truncating variants, 10,000 to 12,000 sites with peptide-
sequence-altering variants, and 459,000 to 565,000 variant sites over-
lapping known regulatory regions (untranslated regions (UTRs),

promoters, insulators, enhancers, and transcription factor binding
sites). African genomes were consistently at the high end of these
ranges. The number of alleles associated with a disease or phenotype
in each genome did not follow this pattern of increased diversity in
Africa (Extended Data Fig. 4): we observed ,2,000 variants per gen-
ome associated with complex traits through genome-wide association
studies (GWAS) and 24–30 variants per genome implicated in rare
disease through ClinVar; with European ancestry genomes at the
high-end of these counts. The magnitude of this difference is unlikely
to be explained by demography10,11, but instead reflects the ethnic bias
of current genetic studies. We expect that improved characterization
of the clinical and phenotypic consequences of non-European alleles
will enable better interpretation of genomes from all individuals and
populations.

Sharing of genetic variants among populations
Systematic analysis of the patterns in which genetic variants are
shared among individuals and populations provides detailed accounts
of population history. Although most common variants are shared
across the world, rarer variants are typically restricted to closely
related populations (Fig. 1a); 86% of variants were restricted to a
single continental group. Using a maximum likelihood approach12,
we estimated the proportion of each genome derived from several
putative ‘ancestral populations’ (Fig. 2a and Extended Data Fig. 5).
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Figure 1 | Population sampling. a, Polymorphic variants within sampled
populations. The area of each pie is proportional to the number of poly-
morphisms within a population. Pies are divided into four slices, representing
variants private to a population (darker colour unique to population), private to
a continental area (lighter colour shared across continental group), shared

across continental areas (light grey), and shared across all continents (dark
grey). Dashed lines indicate populations sampled outside of their ancestral
continental region. b, The number of variant sites per genome. c, The average
number of singletons per genome.
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The same yet different?

•Most variation is within-
populations rather than 
between-populations
• Yet regional differences 
in allele frequencies lead 
to noticeable differences 
in phenotypes
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Statistical variation of an allele
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Within-population 
variation

Between-population 
variation

Total variation

• Variation of the counts xi of an allele about the group mean x̅j 
and the population mean x̅ 



Pitfalls of not accounting for genetic 
ancestry
• Because of allele-frequency differences in global 
populations, spurious associations with disease risk 
can show up that may be entirely explained by genetic 
ancestry
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Example: lactase nonpersistence 
(lactose intolerance)
• The T allele of rs182549 
is completely associated 
with the ability to digest 
lactose in Europeans

CC CT TT

Non-
persistence

59 0 0

Persistence 0 63 74
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Example: lactase nonpersistence 
(lactose intolerance)
• Yet the polymorphism is almost absent in the African 
population, despite the presence of lactase 
persistence 
https://pubmed.ncbi.nlm.nih.gov/15106124/ 
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Population stratification

• An allele may appear associated with a phenotype, 
when in fact it is associated with geographic origin 
(genetic ancestry)
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Spurious association

• An allele of the lactase-
persistence SNP is 
spuriously associated with 
height, as its frequency is 
higher in individuals with 
Northern European 
ancestry vs. Southern
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Northwest Southeast
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Principal components analysis
The concept of genetic ancestry
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Principal components analysis

• Genotypes can distinguish 
population groups

BIOL 350 – Spring 2024 54
https://pubmed.ncbi.nlm.nih.gov/18758442/

https://pubmed.ncbi.nlm.nih.gov/18758442/


Principal components analysis

• Looking at which 
variants segregate 
together can tell us 
about an individual’s 
likely genetic ancestry 
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Genotype matrix

• n individuals are 
genotyped at m SNPs
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Genotype matrix

• The number of alternate 
alleles is 0, 1, or 2
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Genotype matrix

• “Standardize” each 
genotype by 
subtracting the mean 
allele (column) 
frequency and 
dividing by its 
standard error
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“Idealized” individuals

• An “idealized” subject of a particular genetic ancestry 
has genotypes v at m SNPs
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“Idealized” individuals

• The position u11λ11 of individual 1 on PC1 is the 
“amount” of idealized person 1 in individual 1
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“Idealized” individuals

• The position uijλjj of individual i on PCj is the 
“amount” of idealized person j in individual i
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“Idealized” individuals

• The idea of PCA is to find the amount of each 
idealized individual in each actual individual using the 
decomposition of the n × m genotype matrix X into n × 
n, n × n, and n × m matrices U, Σ, and V
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Genomic relationship matrix (GRM)

• The GRM is computed by comparing how similar any 
subject is to any other
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Genomic relationship matrix (GRM)

• The eigenvectors (columns of U) of the GRM contain 
the ancestry components
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Linkage disequilibrium
Determining a set of independent SNPs
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SNPs can occur on either of two 
chromosomes

• Genotype data do not tell 
us which chromosomes 
carry the polymorphism
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SNPs can occur on either of two 
chromosomes

•When at least one parent 
is homozygous at each 
SNP, haplotype phase can 
be unambiguously 
assigned
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SNPs can occur on either of two 
chromosomes

• and we can distinguish 
AB/ab from Ab/aB
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Statistical phasing and imputation

• Genotyped individuals 
can be computationally 
phased by modelling 
each chromosome as an 
imperfect mosaic of 
chromosomes from a 
reference panel
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Statistical phasing and imputation

• Variants that have not 
been typed can be 
imputed into the 
inference sample
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Statistical phasing and imputation

• Imputation accuracy 
depends on the inference 
and reference samples 
being of similar genetic 
ancestry
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Different haplotypes distinguish 
different populations

• Individuals can be 
grouped into populations 
with which they have the 
most haplotype-sharing
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Linkage disequilibrium

• Linkage disequilibrium is the population tendency of 
alleles to be inherited on a single chromosome
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Linkage disequilibrium

• LD is measured as the correlation coefficient between 
the alleles of different SNPs
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Linkage disequilibrium

• pA = fraction of chromosomes with A
• pAB = fraction of chromosomes with A and B
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LD blocks and haplotype structure

• Plots of pairwise r2 
values show which 
SNPs are inherited 
together in the 
population as 
common haplotypes
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An algorithm for computing an 
independent subset of alleles

• From the SNPRelate 
package 
https://rdrr.io/bioc/
SNPRelate/man/snpg
dsLDpruning.html 
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An algorithm for computing an 
independent subset of alleles

• Pick a random SNP
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An algorithm for computing an 
independent subset of alleles

• Compute the LD with 
every other SNP 
within a sliding 
window of 
predetermined size
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An algorithm for computing an 
independent subset of alleles

• If LD > threshold, 
remove the SNP
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An algorithm for computing an 
independent subset of alleles

• Else it becomes a new 
independent SNP
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An algorithm for computing an 
independent subset of alleles

• The algorithm is 
random, and should 
be initiated from a 
fixed seed
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Kinship analysis
The concept of genetic relatedness
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Relatives share haplotypes IBD

• Segments of DNA 
inherited from a common 
ancestor are said to be 
identical by descent 
(IBD)
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Relatives share haplotypes IBD

• DNA that just happens to 
be the same is identical 
by state (IBS)
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Haplotype sharing decays over time

• The longer the IBD 
segment, the more 
closely related are the 
two individuals
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Kinship in genetic association studies

• Large genomic datasets, 
such as the UK Biobank, 
contain related 
individuals
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Kinship in genetic association studies

• Sometimes there is even 
“cryptic” relatedness
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Kinship in genetic association studies

• Because of IBD sharing, 
not all the observations 
are independent, and 
genotype-phenotype 
associations may be 
confounded
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Degree of relatedness

• R is the effective 
number of meioses 
separating two 
individuals through their 
two parents 1 and 2
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Degree of relatedness

• R à ∞ for unrelated 
individuals
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Degree of relatedness

• Parent-child: 
• R = 1 meiosis
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Degree of relatedness

• Siblings: R = 1 “effective” 
meiosis: 
• 1 / 21 = 1 / 22 + 1 / 22
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Degree of relatedness

• Grandparent-grandchild:
• R = 2 meioses
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Degree of relatedness

• Avuncular: 
• R = 2 meioses
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Degree of relatedness

• Cousins: 
• R = 3 meioses
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Degree of relatedness and the fraction 
of the genome shared IBD
• r = 1 / 2R is the fraction 
of the genome shared 
IBD, because there is a ½ 
probability that the gene 
is passed on in each of R 
meioses
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Degree of relatedness and the fraction 
of the genome shared IBD
• A child shares half of its DNA with its parent
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Degree of relatedness and the fraction 
of the genome shared IBD
• A child shares (a different) half its of DNA with its full 
sib 
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Degree of relatedness and the fraction 
of the genome shared IBD
• A child has 0 probability of IBD = 0 with its parent
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Degree of relatedness and the fraction 
of the genome shared IBD
• A child has 0.25 probability of IBD = 0 with its sib 
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The coefficient of relatedness φ

• φ is the probability that 
any two alleles at a single 
locus chosen from two 
individuals are shared IBD

R = 1, r = ½, φ = ¼ 

BIOL 350 – Spring 2024 102

IBD

IBD ✓

✕

✕

✕



The coefficient of relatedness φ

• φ is equal to half of r = 1 
/ 2R

R = 1, r = ½, φ = ¼ 
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Coefficient of relatedness and IBD = 0

• φ decreases as the 
probability that a pair of 
individuals should be IBD 
= 0 increases

Relationship R φ IBD = 0

Monozygotic 
twins

0 0.5 0

Parent-child 1 0.25 0

Full sibs 1 0.25 0.25

2nd degree 2 0.125 0.5

3rd degree 3 0.0625 0.75

Unrelated ∞ 0 1
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Kinship-based Inference for GWAS (KING)

• Estimate φ and IBD 
sharing from the number 
of sites at which two 
individuals are both 
heterozygotes (Aa,Aa) or 
opposite homozygotes 
(AA,aa)
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Kinship-based Inference for GWAS (KING)

• A robust method that 
avoids estimating 
population allele 
fractions, just focuses on 
pairs
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Kinship-based Inference for GWAS (KING)

• Can generate negative 
estimates of φ, indicating 
individuals are from 
distinct populations
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Kinship-based Inference for GWAS (KING)

• φ is plotted vs. the 
fraction of IBS = 0 sites 
(AA,aa)
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Kinship-based Inference for GWAS (KING)

• Negative estimates 
indicate unrelated 
individuals from different 
populations
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Updating the GRM

• The KING kinship 
coefficients 2φ are 
approximately equal to 
the GRM

BIOL 350 – Spring 2024 110

2φij

xj · xij

i

i

j



Updating the GRM

• But the estimate may be 
biased by population 
structure
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PC-AiR: PCA in Related Samples

• Based on the KING 
estimates, PC-AiR 
computes PCs for a set of 
unrelated individuals 
(black)
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PC-AiR: PCA in Related Samples

• Based on the KING 
estimates, PC-AiR 
computes PCs U for a set 
of unrelated individuals 
(black) with genotype 
matrix X
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PC-AiR: PCA in Related Samples

• PCs for the remaining 
samples (blue) are 
imputed into the 
remaining subset (blue) 
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PC-AiR: PCA in Related Samples

• PCs U′ for the remaining 
samples (blue) with 
genotype matrix X′ are 
imputed into the 
remaining subset (blue) 
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PC-Relate

• PC-Relate uses the 
updated PCs to 
distinguish shared genetic 
ancestry from recent 
common ancestors
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PC-Relate

• Each individual’s “best-fit” genotype is predicted from 
its PCs
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PC-Relate

• Each individual’s “best-fit” genotype is predicted from 
its PCs
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PC-Relate

• The slope of the best fit 
line of genotype vs. 
(weighted) PC1 is equal 
to the expected SNP 
genotype in ancestry 1
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PC-Relate

• An updated GRM that reflects 
only recent common ancestry 
can be constructed using the 
“best-fit” genotypes 2pik for 
each individual I at SNP k
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PC-Relate

• The updated GRM will be used 
for fitting a generalized linear 
model during association 
testing
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Association testing
Logistic regression and linear mixed models
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Case-control studies

• Is a genetic variant 
associated with disease?
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Case-control studies

• Is a genetic variant 
enriched in people with 
disease compared to 
people without?
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Case-control studies

• To find out, collect many 
people with disease 
(Cases) and many healthy 
individuals (Controls) 
from the same population
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The odds ratio

• The OR is the ratio of the 
odds that Cases have the 
risk allele (a / c) to the 
odds that Controls have 
the risk allele (b / d)
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The odds ratio

• The OR is the ratio of the 
odds that Cases have the 
risk allele (620 / 380) to 
the odds that Controls 
have the risk allele (490 / 
510)
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The odds ratio

• The OR is a crude 
measure of association 
that is not adjusted for 
other covariates (age, 
sex, ethnicity, etc.) that 
may also be associated 
with disease
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Linear vs. logistic regression

• In linear regression, we 
can find the association 
of a continuous variate Y 
with a predictor X1 and 
other covariates X2, X3, 
etc.
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Linear vs. logistic regression

• Best estimate of the slope of Y vs. X
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Linear vs. logistic regression

• Standard error of the estimate
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Linear vs. logistic regression

• Using the t-test, we can find out if β̂ / s is statistically 
significantly different from 0
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Linear vs. logistic regression

• In logistic regression, we 
can find the association 
of a binary variate Y with 
a predictor X1 and other 
covariates X2, X3, etc.
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Linear vs. logistic regression

• The sigmoid curve is an 
individual’s probability of 
developing disease

BIOL 350 – Spring 2024 134



Linear vs. logistic regression
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• The logistic model 
describes an individual’s 
unobserved disease risk



Linear vs. logistic regression
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Linear vs. logistic regression

• Logistic regression can be 
thought of as linear 
regression is we 
transform the OR into the 
log(OR), and regress vs. 
SNP genotype
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Linear vs. logistic regression

• Other covariates 
can be accounted 
for as additional 
independent 
variables
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Linear vs. logistic regression

• The model is actually fit using the principle of 
maximum-likelihood
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• Yi is a binary indicator of disease for individual i, and 
pi is the unobserved (conditional) probability of 
disease

Linear vs. logistic regression
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• The log-likelihood is a convex function of the 
parameters β which we can maximize

Linear vs. logistic regression
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Linear vs. logistic regression
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Linear vs. logistic regression
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Simulating a binary phenotype

• If odds = a / b, then prob 
= a / (a + b) = odds / (1 + 
odds)
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Simulating a binary phenotype

• β0 is the baseline odds
• β1 is the log-OR
• X1 is the SNP genotype

• If odds = a / b, then prob 
= a / (a + b) = odds / (1 + 
odds)
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Simulating a binary phenotype

• prob is the probability of 
developing disease (being 
a Case in the study) • If odds = a / b, then prob 

= a / (a + b) = odds / (1 + 
odds)
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Simulating a binary phenotype

• β0 becomes the mean log-
odds, so that the mean 
odds of disease is 1 (50% 
Cases, 50% Controls)

• If odds = a / b, then prob 
= a / (a + b) = odds / (1 + 
odds)
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Estimating the SNP effect

•We want to be able to detect the association of one 
SNP with disease by fitting the model Y = β0 + β1X1 + 
··· and finding a slope β1 significantly different from 0 
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Estimating the SNP effect

• A Manhattan plot gives the p-value of the log-OR 
estimate for each SNP
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Estimating the SNP effect

• Because there are more SNPs than subjects, we cannot 
fit all SNPs at once
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Estimating the SNP effect

• But we can fit one SNP plus the “average” effect of all 
the remaining SNPs
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Linear mixed models

• The solution for the best 
estimate of the SNP 
effect β1 in the presence 
of all the remaining SNPs 
involves the GRM ZZT 
(from PC-Relate)

BIOL 350 – Spring 2024 152

2φij

zj · zij

i

i

j



Linear mixed models

• Other covariates X 
commonly included in the 
model are age, sex, and 
the first few genotype 
principal components 
(from PC-AiR)
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Linear mixed models

• If the model including the 
SNP represents a 
significant improvement 
over the null model (the 
model without the SNP), 
we can reject the null 
hypothesis that the OR = 
1
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Linear mixed models

• But because of multiple-
testing, our p-value 
threshold is 0.05 / 106 
(i.e., you perform the 
same test 106 times)
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Linear mixed models

• SNPs with p < 5.0 × 10−8 
are said to achieve 
genome-wide 
significance
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QQ plots

• To assess if the 
distribution of SNP 
effects is significantly 
different from that 
expected by chance, we 
make a quantile or QQ 
plot
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QQ plots

• The expected p-values 
for the quantiles of m 
SNPs are 1/m, 2/m,..., 1
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QQ plots

• Take the negative log-10 
and put in order from 
smallest to biggest
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QQ plots

• SNPs falling above the 
line of identity indicate 
an excess of quantiles 
(β’s) with small p-values
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