BIOL 350: Bioinformatics Introduction to genetic association studies

What is a SNP?

Polymorphisms and their role in genetics

Single-nucleotide polymorphisms

• Polymorphism is the tendency of DNA to admit of different nucleotide pairs at a single locus

Single-nucleotide polymorphisms

 Of 3.2 billion bases, any individual is polymorphic at 4-5 million sites

Single-nucleotide polymorphisms

- The more common allele is called the **major allele**
- The less common allele is called the **minor allele**

IUPAC-IUB SNP codes

• More than just A, T, G, and C?

Variant Legend

intron variant

Ensembl Homo sapiens version 109.38 (GRCh38.p13) Chromosome 17: 64,015,474 - 64,015,575

IUPAC-IUB SNP codes

 Each polymorphism is coded by its possible alleles

https://www.gendx.com/SBTengine/ Help_220/hs310.htm

IUPAC-IUB SNP codes

 Each polymorphism is coded by its possible alleles

Code	Meaning	Explanation
R	A or G	PuRrine
Y	C or T	PYrimidine
S	G or C	Strong H-bonding
W	A or T	Weak H-bonging
К	G or T	Keto bases
М	A or C	aMino bases
В	C or G or T	not A
D	A or G or T	not C
Н	A or C or T	not G
V	A or C or G	not T
Ν	A or C or G or T	ANy

Many rare SNPs

 Common SNPs have minor allele frequency (MAF) >5%

Many rare SNPs

 Most SNPs of the >600 million known SNPs are very rare (frequency < 0.5%)

Many rare SNPs

 But only <5% of an individual's genome consists of rare SNPs

Transitions and transversions

 Transitions occur between nucleotides of the same type (purines or pyrimidines)

Transitions and transversions

• Transversions occur between nucleotides of opposite type (between purines and pyrimidine)

How many polymorphisms are there?

- If there are *n* nucleotide pairs, there are *n* symmetric conversions:
 - A/T \rightarrow T/A transversion
 - C/G \rightarrow G/C transversion

How many polymorphisms are there?

- If there are n nucleotide pairs, there are n(n-1)asymmetric conversions:
 - A/T \rightarrow C/G transversion
 - A/T \rightarrow G/C transition

How many polymorphisms are there?

• A total of $n + n(n - 1) = n^2$ polymorphims

Transition-transversion ratio

• Even though there are three times as many transversions possible as transitions, in humans the ratio of transitions to transversions is approximately 2, genome-wide

BIOL 350 - Spring 2024 <u>https://pubmed.ncbi.nlm.nih.gov/25297068/</u>

Transition-transversion ratio

• In coding regions, the Ti:Tv ratio is as high as 3

BIOL 350 - Spring 2024 https://pubmed.ncbi.nlm.nih.gov/25297068/

Generation of sequencing data

Sequencing technologies and data formats

How do we get human genotypes?

- SNP Chips
- Whole-genome sequencing

• Genomic DNA binds to a complementary sequence and incorporates a fluorescently labelled nucleotide

SNP Chips

• The ratio of red to green at a spot identifies the sample allele

Whole-genome sequencing (WGS)

• DNA fragments from a sample are attached to a flow cell and amplified

Clark et al. *Molecular Biology (3rd Edition)*. Ch. 8: DNA Sequencing, 240-269 (2019)

Whole-genome sequencing (WGS)

• Sequencing by synthesis: Short reads are produced as fluorescent nucleotides are incorporated one base at a time

Clark et al. *Molecular Biology (3rd Edition)*. Ch. 8: DNA Sequencing, 240-269 (2019)

Whole-genome sequencing (WGS)

• The DNA sequence is inferred from the sequence of fluorescence images

Mapping to the reference genome

 Locate where in the genome the reads came from, and detect singlenucleotide differences from the reference sequence

Data-processing pipeline

- Generate raw reads
- Align to a reference genome
- Detect variant sites

FASTQ

 Contains raw sequence reads and their quality scores to be aligned to a reference genome (FASTA)

@AU01/8:/1:HGT//DSXX:1:21/1:1//0/:80// 2:N:0:ACAGCAAC+GTTGCTGT	
GAAGAAAAGAAGGACACAGAGGAGGGAAAGGTTGAGGAAATTGATGAAGAAGAGAAGA	TT
+	
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFI
@A00178:71:HGT77DSXX:1:1507:30291:23422 1:N:0:ACAGCAAC+GTTGCTGT	
ACATAGAGCTTGATGTTGTTGGCCTTCTTCCTGGTGTCGAAGAGGTCAAAGGGGGGGCCTCTTGGGGACAAAAAGGACAGCCTTGAACTCAAG	CT
+	
	FFI
@A00178:71:HGT77DSXX:1:1507:30291:23422 2:N:0:ACAGCAAC+GTTGCTGT	
CTGGATGAGGAAGCCTGAGGAGATCACCAAGGAGGAGTATGCTGCTTTCTATAAAAGCTTGACAAATGACTGGGAAGAGCATCTGGCTGTCA	AG
+	
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FF
@A00178:71:HGT77DSXX:1:2413:22806:35790 1:N:0:ACAGCAAC+GTTGCTGT	
GCTTGATGTTGTTGGCCTTCTTCCTGGTGTCGAAGAGGTCAAAGGGGGGGCCTCTTGGGGACAAAAGGACAGCCTTGAACTCAAGCTGCCCC	TC
+	
	FFI
QA001/8:/1:HGI//DSXX:1:2413:22806:35/90 2:N:0:ACAGCAAC+GIIGCIGI	
GAGAAGAAAAAGAAGACGATCAAGGAGGTTTCTCATGAATGGTCCTTGATCAACAAGCAGAAACCTATCTGGATGAGGAAGCCTGAGGAGAT	CAI
	C.C.
0A00179.71.UCT77DSVV.1.2254.5620.9976.1.N.0.ACACCAAC+CTTCCTCT	FFI
	AG
	FEI
@A00178:71:HGT77DSXX:1:2354:5620:8876_2:N:0:ACAGCAAC+GTTGCTGT	
AGAAGGAAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA	AAC
+	
	FFI
@A00178:71:HGT77DSXX:1:1560:6741:9815 1:N:0:ACAGCAAC+GTTGCTGT	
GCAGGATTTTACCATGATCGACTACTTTTTGTCATGCCCAGAGAAGCTAGATTTTGCCAATGATGTTTATAGACCATTTAACGTTTCGCCAA	GC
	80100
	FFI

• Paired-end reads are aligned to either the forward or reverse strand of the reference genome

5' ACATAGACAGGGACCACCTGCAGGACACACGCAGGTTTACTAAGGGTTTACTCAACACAGTGAACAGCATATACCAGA 3'

5' ACCTGCAGGACACACGCAGGTTTACTAAGGGTTTACTCAACACAGTGA 3'

3' TGGACGTCCTGTGTGTGCGTCCAAATGATTCCCAAATGAGTTGTGTCACT 5'

https://eriqande.github.io/eca-bioinf-handbook/bioinformatic-file-formats.html#sambamfiles

• Paired-end reads are aligned to either the forward or reverse strand of the reference genome

	Read 1:	5'	АССТ	GCAG	GA	3'																				
5' A	ACATAGACAG	GGAC	САССТ	GCAG	GAC/	ACA	CAC	CGC	AGG [.]	ГΤ	ТАС	ТАА	GG(GTT	ТАС	тса	AC	ACA	GTO	6AA	CAG	GCA	TA	ТАС	CAGA	3'
forwa	ard-strand																									
reverse-strand																										
3' 1	IGTATCTGTC	CCTG	GTGGA	CGTC	CTG	TGT(GT (GCG	ТСС	4A/	ATG	ATT	ССС	CAA	ATG	AG1	ТG	TGT	CAC	TT	GT	CGT	AT	ATG	GTCT	5'
												Rea	d 2	2:	3'	٦	ΤG	TGT	CAC	Т	5					

https://eriqande.github.io/eca-bioinf-handbook/bioinformatic-file-formats.html#sambamfiles

• Paired-end reads are aligned to either the forward or reverse strand of the reference genome

https://eriqande.github.io/eca-bioinf-handbook/bioinformatic-file-formats.html#sambamfiles

SAM (BAM)

• A Sequence alignment map (SAM) or binary alignment map (BAM) file contains the alignments to the reference genome

Variant calling (mpileup)

• How certain can we be of an individual's genotype?

https://eriqande.github.io/eca-bioinf-handbook/bioinformatic-file-formats.html#sambamfiles

Variant calling (mpileup)

• How certain can we be of an individual's genotype?

https://eriqande.github.io/eca-bioinf-handbook/bioinformatic-file-formats.html#sambamfiles

Variant calling (mpileup)

• How certain can we be of an individual's genotype?

	The data are: 4 r	eads covering that	site,
		and	
	the associated	base quality score	es
Read #	Read	Observed Base	PHRED-scaled base quality score
1	CAGCTTACA	С	32 (A)
2	ACAGCT	С	37 (F)
3	GTTTA	Т	35 (D)
4	AGCTTACAG	С	33 (B)

https://eriqande.github.io/eca-bioinf-handbook/bioinformatic-file-formats.html#sambamfiles

VCF

• The results of genotype-calling are stored in a variant call format (VCF) file

VCF

<pre>##fileformat=VCFv4.2 ##contig=<id=2,length=51304566> ##INF0=<id=ac,number=a,type=integer,description="allele count="" genotypes"="" in=""> ##INF0=<id=an,number=1,type=integer,description="total alleles="" called="" genotypes"="" in="" number="" of=""> ##FORMAT=<id=gt,number=1,type=string,description="genotype"> ##FORMAT=<id=dp,number=1,type=integer,description="read depth"=""> ##FORMAT=<id=gq,number=1,type=integer,description="genotype quality"=""></id=gq,number=1,type=integer,description="genotype></id=dp,number=1,type=integer,description="read></id=gt,number=1,type=string,description="genotype"></id=an,number=1,type=integer,description="total></id=ac,number=a,type=integer,description="allele></id=2,length=51304566></pre>																
#	CHROM F	205	ID	REF	AL	ΓQU	AL FILTER	INFO	FORMAT	SAMPLE1	SAMPLE2	SAMPLE3	SAMPLE4	SAMPLE5	SAMPLE6	SAMPLE7
2	811/0	•	L.		·	·	AC=9; AN=7	424	GT:DP:GQ	0/0:4:12	0/0:3:9	0/1:1:3	0/1:9:24	1/0:4:12	0/0:5:15	0/0:4:12
2	81171		G	Α	× .	•	AC=6; AN=7	446	GT:DP:GQ	0/1:4:12	0/0:3:9	0/0:1:3	0/0:9:24	0/1:4:12	0/1:5:15	0/0:4:12
2	81182		Α	G			AC=5;AN=7	506	GT:DP:GQ	0/0:5:15	0/0:4:12	0/0:5:15	0/0:9:24	0/0:4:12	0/0:4:12	0/0:4:12
2	81204		т	G			AC=2; AN=7	542	GT:DP:GQ	1/0:5:15	0/0:9:27	0/0:10:30	0/0:15:39	0/0:9:27	1/0:13:39	0/1:14:42
в	F								\downarrow	/ `				/		
2 2 2 2	81170 81171 81182 81204	:	C G A T	T A G G			AC=9;AN=7 AC=6;AN=7 AC=5;AN=7 AC=2;AN=7	424 446 506 542	GT:0/0:0/0 GT:0/1:0/0 GT:0/0:0/0 GT:1/0:0/0):0/1:0/1:1/):0/0:0/0:0/):0/0:0/0:0/):0/0:0/0:0/	0:0/0:0/0 1:0/1:0/0 0:0/0:0/0 0:1/0:0/1	DP:4:3:1:9:4 DP:4:3:1:9:4 DP:5:4:5:9:4 DP:5:9:10:1	4:5:4 4:5:4 4:4:4 5:9:13:14	GQ:12: 9: GQ:12: 9: GQ:15:12: GQ:15:27:	3:24:12:15: 3:24:12:15: 15:24:12:12: 30:39:27:39:4	12 12 12 42
VCF

• The VCF file has one row for each variant, and one column for each sequenced individual

##file	format=\	/CFv4.0										
##file	ate=201	110705										
##refe	rence=10	000Genomes	Pilot	-NCBI37								
##phas	ing=part	tial										
##INFO		Number=1.	Type=	Integer.	Descr	iption=	"Number of Samples With Data">					
##INFO	==ID=DP	Number=1.	Type=	Integer I	Descr	iption=	'Total Depth">					
##INFO	ID=AF	Number=	Type=	Float De	scrip	tion="A	lele Frequency">					
##TNFO	TD=AA	Number=1.	Type=	String D	escri	otion="/	Ancestral Allele">					
##TNFO	TD=DB	Number=0	Type=	Flag. Des	cript	ion="db	SNP membership, build 129">					
##INFO	= <id=h2< td=""><td>Number=0</td><td>Type=</td><td>Flag.Des</td><td>cript</td><td>ion="Hat</td><td>Map2 membership"></td><td></td><td></td><td></td><td></td></id=h2<>	Number=0	Type=	Flag.Des	cript	ion="Hat	Map2 membership">					
##FILT	R= <id=0< td=""><td>10.Descri</td><td>otion</td><td>="Ouality</td><td>v bel</td><td>ow 10"></td><td></td><td></td><td></td><td></td><td></td></id=0<>	10.Descri	otion	="Ouality	v bel	ow 10">						
WWFILT	##FILTER* <id=s50 description="less than 50% of samples have data"></id=s50>											
##FORM	T= <td=0< td=""><td>50 Number=</td><td>1. TVD</td><td>e=Intege</td><td>r.Des</td><td>criptio</td><td>="Genotype Quality"></td><td></td><td></td><td></td><td></td></td=0<>	50 Number=	1. TVD	e=Intege	r.Des	criptio	="Genotype Quality">					
##FORM	T= <id=< td=""><td>T.Number=</td><td>1. Type</td><td>e=String</td><td>Desc</td><td>ription</td><td>"Genotype"></td><td></td><td></td><td></td><td></td></id=<>	T.Number=	1. Type	e=String	Desc	ription	"Genotype">					
##FORM	T= <id=< td=""><td>P.Number=</td><td>1.TVD</td><td>e=Intege</td><td>r.Des</td><td>criptio</td><td>="Read Depth"></td><td></td><td></td><td></td><td></td></id=<>	P.Number=	1.TVD	e=Intege	r.Des	criptio	="Read Depth">					
##FORM	T= <id=< td=""><td>10 Number=</td><td>2. TVD</td><td>e=Intege</td><td>r.Des</td><td>criptio</td><td>="Haplotype Quality"></td><td></td><td></td><td></td><td></td></id=<>	10 Number=	2. TVD	e=Intege	r.Des	criptio	="Haplotype Quality">					
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	Sample1	Sample2	Sample3	
Z	4370	rs6057	6	A	29	19000	NS=2;DP=13;AF=0.5;DB;H2	GT:G0:DP:H0	0 0:48:1:52.51	110:48:8:51.51	1/1:43:5:	
2	7330		т	A	3	q10	NS=5;DP=12;AF=0.017	GT:GQ:DP:H0	0 0:46:3:58,50	011:3:5:65.3	0/0:41:3	
2	110696	rs6055	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	112:21:6:23,27	211:2:0:18,2	2/2:35:4	
2	130237		Т	200	47	10000	NS=2;DP=16;AA=T	GT:GQ:DP:HQ	0 0:54:7:56,60	0 0:48:4:56,51	0/0:61:2	
2	134567	microsat1	GTCT	G,GTACT	50	PASS	NS=2;DP=9;AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3	

VCF

• Codes such as GT, DP, GP give the genotype, read depth, and genotype probabilities for each individual

##filef	format=\	/CFv4.0									
##fileD	ate=201	110705									
##refer	ence=10	000Genomes	Pilot	-NCBI37							
##phasi	ing=part	tial									
##INFO=	-< ID=NS	Number=1,	Type=	Integer,	Descr	iption="	"Number of Samples With Data">				
##INFO=	<id=dp,< td=""><td>Number=1,</td><td>Type=</td><td>Integer, I</td><td>Descr</td><td>iption='</td><td>'Total Depth"></td><td></td><td></td><td></td><td></td></id=dp,<>	Number=1,	Type=	Integer, I	Descr	iption='	'Total Depth">				
##INFO	-ID=AF	Number=.,	Type=	Float, Des	scrip	tion="Al	<pre>llele Frequency"></pre>				
##INFO-	-ID=AA,	Number=1,	Type=	String, De	escri	ption="/	Ancestral Allele">				
##INFO= <id=db,number=0,type=flag,description="dbsnp 129"="" build="" membership,=""></id=db,number=0,type=flag,description="dbsnp>											
##INFO=	<id=h2,< td=""><td>Number=0,</td><td>Type=</td><td>Flag, Desi</td><td>cript.</td><td>ion="Hap</td><td>oMap2 membership*></td><td></td><td></td><td></td><td></td></id=h2,<>	Number=0,	Type=	Flag, Desi	cript.	ion="Hap	oMap2 membership*>				
##FILTER= <id=q10,description="quality 10"="" below=""></id=q10,description="quality>											
##FILTE	R= <id=9< td=""><td>50,Descri</td><td>ption</td><td>"Less th</td><td>han 5</td><td>Ø∿ of sa</td><td>amples have data"></td><td></td><td></td><td></td><td></td></id=9<>	50,Descri	ption	"Less th	han 5	Ø∿ of sa	amples have data">				
##FORM	T= <id=0< td=""><td>GQ,Number=</td><td>1, Type</td><td>e=Intege</td><td>r,Des</td><td>cription</td><td>n="Genotype Quality"></td><td></td><td></td><td></td><td></td></id=0<>	GQ,Number=	1, Type	e=Intege	r,Des	cription	n="Genotype Quality">				
##FORMA	T= <id=0< td=""><td>GT, Number=</td><td>1, Type</td><td>e=String</td><td>,Desc</td><td>ription</td><td>="Genotype"></td><td></td><td></td><td></td><td></td></id=0<>	GT, Number=	1, Type	e=String	,Desc	ription	="Genotype">				
##FORM/	T= <id=0< td=""><td>OP, Number=</td><td>1, Type</td><td>e=Intege</td><td>r,Des</td><td>cription</td><td><pre>n="Read Depth"></pre></td><td></td><td></td><td></td><td></td></id=0<>	OP, Number=	1, Type	e=Intege	r,Des	cription	<pre>n="Read Depth"></pre>				
##FORM	T= <id=< td=""><td>10, Number=</td><td>2, Type</td><td>e=Intege</td><td>r,Des</td><td>cription</td><td>n="Haplotype Quality"></td><td></td><td></td><td></td><td></td></id=<>	10, Number=	2, Type	e=Intege	r,Des	cription	n="Haplotype Quality">				
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	Sample1	Sample2	Sample3
Z	4370	rs6057	6	A	29		NS=2;DP=13;AF=0.5;DB;H2	GT:GQ:DP:HQ	0 0:48:1:52,51	1 0:48:8:51,51	1/1:43:5:.,.
2	7330	*	т	A	3	q10	NS=5;DP=12;AF=0.017	GT:GQ:DP:HQ	0 0:46:3:58,50	0 1:3:5:65,3	0/0:41:3
2	110696	rs6055	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1 2:21:6:23,27	2 1:2:0:18,2	2/2:35:4
2	130237	+	Т		47		NS=2;DP=16;AA=T	GT:GQ:DP:HQ	0 0:54:7:56,60	0 0:48:4:56,51	0/0:61:2
2	134567	microsat1	GTCT	G,GTACT	50	PASS	NS=2;DP=9;AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3

Human genetic variation Sequencing projects and implications for association studies

The HapMap Project

 International genotyping consortium launched in 2002 to find common polymorphisms linked to rare disease loci

BIOL 350 - Spring 2022/255080/

The HapMap Project

• Variants occur together on a small number of haplotypes

The HapMap Project

 Phase 3 (2010): genotyping and PCR resequencing of 1.6 million SNPs from 1,184 human samples from different parts of the world

The 1000 Genomes Project

 An international consortium launched in 2008 to catalog rare variants (frequency < 1%) taking advantage of new sequencing technologies

The 1000 Genomes Project

 Phase 3 release (2015) contained data from 2,504 individuals representing 26 populations across the globe, and identified 85 million new SNPs

Global genetic variation

• Most SNPs are shared across continents, and the majority of variation (~85%) is within rather than between populations

The same yet different?

- Most variation is withinpopulations rather than between-populations
- Yet regional differences in allele frequencies lead to noticeable differences in phenotypes

Statistical variation of an allele

• Variation of the counts x_i of an allele about the group mean $\overline{x_j}$ and the population mean \overline{x}

$$\sum_{i} (x_{i} - \overline{x})^{2} = \sum_{i} (x_{i} - \overline{x}_{j(i)})^{2} + \sum_{i} (\overline{x}_{j(i)} - \overline{x})^{2}$$
Total variation
Within-population
variation
Within-population
variation

Pitfalls of not accounting for genetic ancestry

• Because of allele-frequency differences in global populations, **spurious associations** with disease risk can show up that may be entirely explained by genetic ancestry

Example: lactase nonpersistence (lactose intolerance)

• The T allele of rs182549 is completely associated with the ability to digest lactose in Europeans

	CC	СТ	TT
Non- persistence	59	0	0
Persistence	0	63	74

https://pubmed.ncbi.nlm.nih.gov/11788828/

Example: lactase nonpersistence (lactose intolerance)

 Yet the polymorphism is almost absent in the African population, despite the presence of lactase persistence https://pubmed.ncbi.nlm.nih.gov/15106124/

Population stratification

• An allele may appear associated with a phenotype, when in fact it is associated with geographic origin (genetic ancestry)

Spurious association

• An allele of the lactasepersistence SNP is spuriously associated with height, as its frequency is higher in individuals with Northern European ancestry vs. Southern

https://pubmed.ncbi.nlm.nih.gov/

BIOL 350 - Spring 2024 3,

Principal components analysis The concept of genetic ancestry

Principal components analysis

• Genotypes can distinguish population groups

https://pubmed.ncbi.nlm.nih.gov/18758442/

Principal components analysis

 Looking at which variants segregate together can tell us about an individual's likely genetic ancestry

https://pubmed.ncbi.nlm.nih.gov/18758442/

Genotype matrix

 n individuals are genotyped at m SNPs

$$\mathbf{X} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ x_{21} & \cdots & x_{2m} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}$$

Genotype matrix

• The number of alternate alleles is 0, 1, or 2

Genotype matrix

 "Standardize" each genotype by subtracting the mean allele (column) frequency and dividing by its standard error

$$\mathbf{X} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ x_{21} & \cdots & x_{2m} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}$$

• An "idealized" subject of a particular genetic ancestry has genotypes v at m SNPs

$$\mathbf{X}\mathbf{V}^{T} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ x_{21} & \cdots & x_{2n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ \vdots & \vdots & & \vdots \\ v_{m1} & v_{m2} & \cdots & v_{mn} \end{pmatrix}$$

• The position $u_{11}\lambda_{11}$ of individual 1 on PC1 is the "amount" of idealized person 1 in individual 1

$$\begin{pmatrix} u_{11} & \cdots & u_{1n} \\ u_{21} & \cdots & u_{2n} \\ \vdots & & \vdots \\ u_{n1} & \cdots & u_{nn} \end{pmatrix} \begin{pmatrix} \lambda_{11} \\ \lambda_{22} \\ & \ddots \\ & & \lambda_{nn} \end{pmatrix} = \mathbf{U} \boldsymbol{\Sigma}$$

• The position $u_{ij}\lambda_{jj}$ of individual i on PCj is the "amount" of idealized person j in individual i

$$\begin{pmatrix} u_{11} & \cdots & u_{1n} \\ u_{21} & \cdots & u_{2n} \\ \vdots & & \vdots \\ u_{n1} & \cdots & u_{nn} \end{pmatrix} \begin{pmatrix} \lambda_{11} \\ \lambda_{22} \\ & \ddots \\ & & \lambda_{nn} \end{pmatrix} = \mathbf{U} \boldsymbol{\Sigma}$$

 The idea of PCA is to find the amount of each idealized individual in each actual individual using the decomposition of the n × m genotype matrix X into n × n, n × n, and n × m matrices U, Σ, and V

$$\mathbf{X}\mathbf{V}^T = \mathbf{U}\mathbf{\Sigma}$$

Genomic relationship matrix (GRM)

• The GRM is computed by comparing how similar any subject is to any other

$$\mathbf{X}\mathbf{X}^{T} = \begin{pmatrix} \mathbf{x}_{1} \cdot \mathbf{x}_{1} & \cdots & \mathbf{x}_{1} \cdot \mathbf{x}_{n} \\ \mathbf{x}_{2} \cdot \mathbf{x}_{1} & \cdots & \mathbf{x}_{2} \cdot \mathbf{x}_{n} \\ \vdots & & \vdots \\ \mathbf{x}_{n} \cdot \mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \cdot \mathbf{x}_{n} \end{pmatrix}$$

Genomic relationship matrix (GRM)

• The **eigenvectors** (columns of U) of the GRM contain the ancestry components

Linkage disequilibrium Determining a set of independent SNPs

SNPs can occur on either of two chromosomes

• Genotype data do not tell us which chromosomes carry the polymorphism

SNPs can occur on either of two chromosomes

• When at least one parent is homozygous at each SNP, haplotype phase can be unambiguously assigned

SNPs can occur on either of two chromosomes

• and we can distinguish AB/ab from Ab/aB

Statistical phasing and imputation

https://pubmed.ncbi.nlm.nih.gov/14704198/

• Genotyped individuals can be computationally **phased** by modelling each chromosome as an imperfect **mosaic** of chromosomes from a reference panel

Statistical phasing and imputation

• Variants that have not been typed can be imputed into the inference sample

Statistical phasing and imputation

 Imputation accuracy depends on the inference and reference samples being of similar genetic ancestry

Different haplotypes distinguish different populations

 Individuals can be grouped into populations with which they have the most haplotype-sharing

https://pubmed.ncbi.nlm.nih.gov/2578 8095/ BIOL 350 - Spring 2024
Linkage disequilibrium

• Linkage disequilibrium is the population tendency of alleles to be inherited on a single chromosome

Linkage disequilibrium

• LD is measured as the correlation coefficient between the alleles of different SNPs

$$r_{A,B} = \frac{p_{A,B} - p_A p_B}{\sqrt{p_A (1 - p_A) p_B (1 - p_B)}}$$

Linkage disequilibrium

- p_A = fraction of chromosomes with A
- p_{AB} = fraction of chromosomes with A and B

$$r_{A,B} = \frac{p_{A,B} - p_A p_B}{\sqrt{p_A (1 - p_A) p_B (1 - p_B)}}$$

LD blocks and haplotype structure

 Plots of pairwise r² values show which SNPs are inherited together in the population as common haplotypes

https://pubmed.ncbi.nlm.nih.gov/32221414/

• From the SNPRelate package https://rdrr.io/bioc/ SNPRelate/man/snpg dsLDpruning.html

 Compute the LD with every other SNP within a sliding window of predetermined size

• The algorithm is random, and should be initiated from a fixed seed

Kinship analysis The concept of genetic relatedness

Relatives share haplotypes IBD

 Segments of DNA inherited from a common ancestor are said to be identical by descent (IBD)

Relatives share haplotypes IBD

 DNA that just happens to be the same is identical by state (IBS)

Haplotype sharing decays over time

• The longer the IBD segment, the more closely related are the two individuals

Kinship in genetic association studies

https://pubmed.ncbi.nlm.nih.gov/30305743/

• Large genomic datasets, such as the UK Biobank, contain related individuals

Kinship in genetic association studies

https://pubmed.ncbi.nlm.nih.gov/30305743/

• Sometimes there is even "cryptic" relatedness

Kinship in genetic association studies

https://pubmed.ncbi.nlm.nih.gov/30305743/

 Because of IBD sharing, not all the observations are independent, and genotype-phenotype associations may be confounded

• R is the effective number of meioses separating two individuals through their two parents 1 and 2

$$\frac{1}{2^R} = \frac{1}{2^{R_1}} + \frac{1}{2^{R_2}}$$

• $R \rightarrow \infty$ for unrelated individuals

$$\frac{1}{2^R} = \frac{1}{2^{R_1}} + \frac{1}{2^{R_2}}$$

Parent-child:R = 1 meiosis

• Siblings: R = 1 "effective" meiosis:

• 1 /
$$2^1$$
 = 1 / 2^2 + 1 / 2^2

Grandparent-grandchild: R = 2 meioses

Avuncular:R = 2 meioses

Cousins:R = 3 meioses

 r = 1 / 2^R is the fraction of the genome shared IBD, because there is a ¹/₂ probability that the gene is passed on in each of R meioses

• A child shares half of its DNA with its parent

• A child shares (a different) half its of DNA with its full sib

• A child has 0 probability of IBD = 0 with its parent

• A child has 0.25 probability of IBD = 0 with its sib

The coefficient of relatedness ϕ

 φ is the probability that any two alleles at a single locus chosen from two individuals are shared IBD

The coefficient of relatedness $\boldsymbol{\phi}$

• ϕ is equal to half of r = 1 / 2^R

Coefficient of relatedness and IBD = 0

 φ decreases as the probability that a pair of individuals should be IBD = 0 increases

Relationship	R	φ	IBD = 0
Monozygotic twins	0	0.5	0
Parent-child	1	0.25	0
Full sibs	1	0.25	0.25
2 nd degree	2	0.125	0.5
3 rd degree	3	0.0625	0.75
Unrelated	∞	0	1

 Estimate φ and IBD sharing from the number of sites at which two individuals are both heterozygotes (Aa,Aa) or opposite homozygotes (AA,aa)

105

• A robust method that avoids estimating population allele fractions, just focuses on pairs

BIOL 350 - Spring 2024 at.shtml

106

 Can generate negative estimates of φ, indicating individuals are from distinct populations

107

 φ is plotted vs. the fraction of IBS = 0 sites (AA,aa)

https://uw-gac.github.io/SISG_2021/ancestry-andrelatedness-inference.html
Kinship-based Inference for GWAS (KING)

• Negative estimates indicate unrelated individuals from different populations

https://uw-gac.github.io/SISG_2021/ancestry-andrelatedness-inference.html

Updating the GRM

 The KING kinship coefficients 2φ are approximately equal to the GRM

Updating the GRM

 But the estimate may be biased by population structure

 Based on the KING estimates, PC-AiR computes PCs for a set of unrelated individuals (black)

BIOL 350 - Springo202ghettes/GENESIS/inst/doc/pcair.html 112

 Based on the KING estimates, PC-AiR computes PCs U for a set of unrelated individuals (black) with genotype matrix X

$$\mathbf{X}^T\mathbf{U} = \mathbf{V}\mathbf{\Sigma}$$

BIOL 350 - Springial 2024 gnettes/GENESIS/inst/doc/pcair.htm 113

• PCs for the remaining samples (blue) are imputed into the remaining subset (blue)

 PCs U' for the remaining samples (blue) with genotype matrix X' are imputed into the remaining subset (blue)

$$\mathbf{X}'\left(\mathbf{X}^T\mathbf{U}\mathbf{\Sigma}^{-1}\right) = \mathbf{X}'\mathbf{V}$$

BIOL 350 - Springo202ghettes/GENESIS/inst/doc/pcair.html 115

 PC-Relate uses the updated PCs to distinguish shared genetic ancestry from recent common ancestors

• Each individual's "best-fit" genotype is predicted from its PCs

$$\mathbb{E}\left(g_{ik} \mid u_{ij}\right) = 2p_k + 2p_k\left(1 - p_k\right)u_{ij}\lambda_{jj} \cdot v_{kj}$$

• Each individual's "best-fit" genotype is predicted from its PCs

$$\mathbb{E}\left(g_{ik} \mid u_{ij}\right) = 2p_k + 2p_k\left(1 - p_k\right)u_{ij}\lambda_{jj} \cdot v_{kj}$$

Population allele frequency

Amount of
ancestry jSNP k genotype in
ancestry j

• The slope of the best fit line of genotype vs. (weighted) PC1 is equal to the expected SNP genotype in ancestry 1 PCA loading of 10:60969:C:A in ancestry 1

• An updated GRM that reflects only recent common ancestry can be constructed using the "best-fit" genotypes 2pik for each individual I at SNP k

$$2\hat{\varphi}_{ij} = \frac{\sum_{k} \left(g_{ik} - 2p_{ik}\right) \left(g_{jk} - 2p_{jk}\right)}{2\sqrt{p_{ik} \left(1 - p_{ik}\right) p_{jk} \left(1 - p_{jk}\right)}}$$

BIOL 350 - Spring 2024

120

• The updated GRM will be used for fitting a generalized linear model during association testing

$$2\hat{\varphi}_{ij} = \frac{\sum_{k} \left(g_{ik} - 2p_{ik}\right) \left(g_{jk} - 2p_{jk}\right)}{2\sqrt{p_{ik} \left(1 - p_{ik}\right) p_{jk} \left(1 - p_{jk}\right)}}$$

Association testing

Logistic regression and linear mixed models

Case-control studies

 Is a genetic variant associated with disease?

Case-control studies

 Is a genetic variant enriched in people with disease compared to people without?

Case-control studies

• To find out, collect many people with disease (Cases) and many healthy individuals (Controls) from the same population

The odds ratio

 The OR is the ratio of the odds that Cases have the risk allele (a / c) to the odds that Controls have the risk allele (b / d)

OR = (a / c) / (b / d) = (ad) / (bc)

The odds ratio

 The OR is the ratio of the odds that Cases have the risk allele (620 / 380) to the odds that Controls have the risk allele (490 / 510)

OR = (620 × 510) / (490 × 380) = 1.70

The odds ratio

• The OR is a crude measure of association that is not adjusted for other covariates (age, sex, ethnicity, etc.) that may also be associated with disease

OR = (620 × 510) / (490 × 380) = 1.70

In linear regression, we can find the association of a continuous variate Y with a predictor X₁ and other covariates X₂, X₃, etc.

• Best estimate of the slope of Y vs. X

$$\hat{\beta} = \frac{\sum_{i} \left(Y_{i} - \overline{Y} \right) \left(X_{i} - \overline{X} \right)}{\sum_{i} \left(X_{i} - \overline{X} \right)^{2}}$$

Standard error of the estimate

$$s_{\hat{\beta}} = \sqrt{\frac{\sum_{i} \left(Y_{i} - \hat{\alpha} - \hat{\beta}X_{i}\right)^{2} / (N - 2)}{\sum_{i} \left(X_{i} - \overline{X}\right)^{2}}}$$

• Using the t-test, we can find out if β / s is statistically significantly different from 0

• In logistic regression, we can find the association of a **binary variate** Y with a predictor X₁ and other covariates X₂, X₃, etc.

• The sigmoid curve is an individual's probability of developing disease

• The logistic model describes an individual's **unobserved** disease risk

$$p = \frac{e^{\beta_0 + X_1 \beta_1}}{1 + e^{\beta_0 + X_1 \beta_1}}$$

• The **logit** function turns this problem into one of linear regression

$$\log \frac{p}{1-p} = \beta_0 + X_1 \beta_1$$

 Logistic regression can be thought of as linear regression is we transform the OR into the log(OR), and regress vs.
SNP genotype

 Other covariates can be accounted for as additional independent variables

• The model is actually fit using the principle of **maximum-likelihood**

• Y_i is a binary indicator of disease for individual i, and p_i is the unobserved (conditional) probability of disease

$$\mathcal{L} = \prod_{i} p_i^{y_i} \left(1 - p_i\right)^{1 - y_i}$$

• The **log-likelihood** is a convex function of the parameters B which we can maximize

$$\ell = \sum_{i} y_i \left(\beta_0 + X_1 \beta_1\right) + \log\left(1 + e^{\beta_0 + X_1 \beta_1}\right)$$

Simulating a binary phenotype

Simulating a binary phenotype

 $\log (\text{odds}) = \beta_0 + X_1 \beta_1$

- \bullet B₀ is the baseline odds
- B_1 is the log-OR
- X₁ is the SNP genotype

If odds = a / b, then prob
 = a / (a + b) = odds / (1 + odds)

Simulating a binary phenotype

prob =
$$\frac{e^{\beta_0 + X_1 \beta_1}}{1 + e^{\beta_0 + X_1 \beta_1}}$$

 prob is the probability of developing disease (being a Case in the study)

If odds = a / b, then prob
= a / (a + b) = odds / (1 + odds)

Simulating a binary phenotype

prob =
$$\frac{e^{\left(X_1 - \overline{X}_1\right)\beta_1}}{1 + e^{\left(X_1 - \overline{X}_1\right)\beta_1}}$$

 B₀ becomes the mean logodds, so that the mean odds of disease is 1 (50% Cases, 50% Controls)

If odds = a / b, then prob
= a / (a + b) = odds / (1 + odds)

• We want to be able to **detect** the association of one SNP with disease by fitting the model $Y = B_0 + B_1X_1 + \cdots$ and finding a slope B_1 significantly different from 0

• A Manhattan plot gives the p-value of the log-OR estimate for each SNP

• Because there are more SNPs than subjects, we cannot fit all SNPs at once

• But we can fit one SNP plus the "average" effect of all the remaining SNPs

 The solution for the best estimate of the SNP effect B₁ in the presence of all the remaining SNPs involves the GRM ZZ^T (from PC-Relate)

$$\mathbf{X}^{T} \left(\mathbf{I} + \mathbf{Z} \mathbf{Z}^{T} \right)^{-1} \hat{\beta} = \mathbf{X}^{T} \left(\mathbf{I} + \mathbf{Z} \mathbf{Z}^{T} \right)^{-1} \mathbf{Y}$$

 Other covariates X commonly included in the model are age, sex, and the first few genotype principal components (from PC-AiR)

• If the model including the SNP represents a significant improvement over the null model (the model without the SNP), we can reject the null hypothesis that the OR =

• But because of multipletesting, our p-value threshold is 0.05 / 10⁶ (i.e., you perform the same test 10⁶ times)

• SNPs with p < 5.0 × 10⁻⁸ are said to achieve genome-wide significance

 To assess if the distribution of SNP effects is significantly different from that expected by chance, we make a quantile or QQ plot

• The **expected** p-values for the quantiles of m SNPs are 1/m, 2/m,..., 1

• Take the negative log-10 and put in order from smallest to biggest

 SNPs falling above the line of identity indicate an excess of quantiles (B's) with small p-values

